M1.(a)

	223 88 R a	224 88 R a	225 88 R a	226 88 R a		
Isotope with smallest mass number	(\checkmark)					
Isotope with most neutrons in nucleus				\checkmark		
Isotope with nucleus that has highest specific charge	\checkmark					
Isotope that decays by β decay to form 225 89	Ac				\quad	(
:---						

one mark for each correct row (ignore first row as already ticked)
allow cross instead of tick and ignore any crossed out ticks if more than one tick in a row then no mark
(b) (i) the atom has lost two electrons $\sqrt{ }$
(ii) (use of specific charge $=$ charge \div mass) mass $=3.2 \times 10^{-19} \div 8.57 \times 10^{5}=3.734 \times 10^{-25}(\mathrm{~kg})$ mass number $=3.734 \times 10^{-25} \div 1.66 \times 10^{-27} \quad \checkmark(=225)$ 225
hence ${ }^{(88)} \mathrm{Ra}$ OR $225 \checkmark \checkmark$
OR
calculate specific charge for each isotope \checkmark
225
hence ${ }^{(88)} \mathrm{Ra}$ OR $225 \checkmark \checkmark$
ignore any reference to electrons
first mark for deduction
bald correct answer scores 2 marks

don't need radium symbol or 88

wrong answer scores zero

M2.(a) A a particles
[auto mark question]
(b) (i)

type of radiation	Typical range in air $/ \mathrm{m}$
α	$0.04 \checkmark$
β	$0.40 \checkmark$

Allow students to use their own distance units in the table α allow $0.03 \rightarrow 0.07 \mathrm{~m}$
β allow $0.20 \rightarrow 3.0 \mathrm{~m}$.
If a range is given in the table use the larger value.
A specific number is required e.g. not just a few cm .
(ii) reference to the inverse square law of (γ radiation)
or
reference to lowering of the solid angle (subtended by the detector as it moves away)
or
radiation is spread out (over a larger surface area as the detector is moved away) \checkmark
(owtte)
Ignore any references to other types of radiation.
Any contradiction loses the mark. For example, follows inverse square law so intensity falls exponentially.
(c) dust may be ingested / taken into the body / breathed in \checkmark

First mark for ingestion not just on the body
causing (molecules in human tissue / cells) to be made cancerous / killed / damaged by ionisation

Second mark for idea of damage from ionisation

M3.(a) $(90,39)$
B1
(0,-1)
B1
\bar{v}^{e}

B1

(b) $d \rightarrow u$
or
Number of u quarks increases by 1 and number of d quarks decreases by 1
(c) (i) Meson

Do not allow hadron
(ii) Negative box ticked
(iii) Characteristic of particles with strange quarks / they contain the strange quark / they have strangeness

B1
(iv) Gluon, W^{+}($^{-}{ }^{-}$) (boson) or Z°

M4.(a) 95 protons \checkmark
$241-95=146$ neutrons \checkmark
(b) Beta minus decay. \checkmark

Marks can be given for a correct equation

There is no change in the number of nucleons.
The number of protons increases by $1 . \checkmark$
Ignore omitted antineutrino.
(c) $\quad{ }_{95}^{241} \quad \mathrm{Am} \rightarrow \mathrm{A} \quad \begin{gathered}4 \\ \mathrm{Z} \mathrm{X}\end{gathered} \mathrm{e}^{2} \alpha$

Nucleon number $=A=241-4=237 \checkmark$

Proton number $=Z=95-2=93 \checkmark$
(d) Ionisation is the removal (or addition) of electrons from (to) an atom or molecule \downarrow
(e) Only a small quantity of material is needed

The particles it emits do not travel more than a few centimetres
Alternative for 2nd mark: Would be stopped before reaching the outside of the detector

M6.(a) (i) \quad / boron / B
(ii) P and R / R and P /
(iii) $R \checkmark$
$6 / 14$ is smallest fraction / 0.43 smallest ratio / $4.13 \times 10^{7} \mathrm{C} / \mathrm{kg}$
Cannot get second mark if not awarded first mark
(iv)

$$
{ }_{6}^{14} R \rightarrow{ }_{7}^{14} X+{ }_{-1}^{0} e+\overline{v_{(e)}} \vee \checkmark \checkmark
$$

One mark for each correct symbol on rhs Ignore -ve sign on e.
Can have neutrino with 0,0 on answer lines Ignore any subscript on neutrino
(b) (i) repulsive below / at 0.5 fm (accept any value less or equal to 1 fm) \checkmark attractive up to / at 3 fm (accept any value between 0.5 and 10 fm) short range OR becomes zero OR no effect \checkmark

Can get marks from labelled graph
Don't accept negligible for $3^{d d}$ mark
(ii) interaction: electromagnetic / em
(virtual) photon $/ \gamma$

